\(\int \frac {x^2 (A+B x+C x^2)}{a+b x^2+c x^4} \, dx\) [23]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 270 \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {C x}{c}+\frac {\left (A c-b C-\frac {A b c-\left (b^2-2 a c\right ) C}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (A c-b C+\frac {A b c-b^2 C+2 a c C}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {b B \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c \sqrt {b^2-4 a c}}+\frac {B \log \left (a+b x^2+c x^4\right )}{4 c} \]

[Out]

C*x/c+1/4*B*ln(c*x^4+b*x^2+a)/c+1/2*b*B*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/c/(-4*a*c+b^2)^(1/2)+1/2*arcta
n(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(A*c-C*b+(-A*b*c+(-2*a*c+b^2)*C)/(-4*a*c+b^2)^(1/2))/c^(3/2)
*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/2*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(A*c-C*b+(A*b
*c+2*C*a*c-C*b^2)/(-4*a*c+b^2)^(1/2))/c^(3/2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {1676, 1293, 1180, 211, 12, 1128, 648, 632, 212, 642} \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {\left (-\frac {A b c-C \left (b^2-2 a c\right )}{\sqrt {b^2-4 a c}}+A c-b C\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {2 a c C+A b c+b^2 (-C)}{\sqrt {b^2-4 a c}}+A c-b C\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {b B \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c \sqrt {b^2-4 a c}}+\frac {B \log \left (a+b x^2+c x^4\right )}{4 c}+\frac {C x}{c} \]

[In]

Int[(x^2*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]

[Out]

(C*x)/c + ((A*c - b*C - (A*b*c - (b^2 - 2*a*c)*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[
b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((A*c - b*C + (A*b*c - b^2*C + 2*a*c*C)/Sqrt[b
^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a
*c]]) + (b*B*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c*Sqrt[b^2 - 4*a*c]) + (B*Log[a + b*x^2 + c*x^4])/(4
*c)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1128

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1293

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e*f*
(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 3))), x] - Dist[f^2/(c*(m + 4*p + 3)), Int[(f*x)^(m -
 2)*(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[
{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (Inte
gerQ[p] || IntegerQ[m])

Rule 1676

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
 k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B x^3}{a+b x^2+c x^4} \, dx+\int \frac {x^2 \left (A+C x^2\right )}{a+b x^2+c x^4} \, dx \\ & = \frac {C x}{c}+B \int \frac {x^3}{a+b x^2+c x^4} \, dx-\frac {\int \frac {a C+(-A c+b C) x^2}{a+b x^2+c x^4} \, dx}{c} \\ & = \frac {C x}{c}+\frac {1}{2} B \text {Subst}\left (\int \frac {x}{a+b x+c x^2} \, dx,x,x^2\right )-\frac {\left (-A c+b C+\frac {A b c-b^2 C+2 a c C}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}-\frac {\left (-A c+b C-\frac {A b c-\left (b^2-2 a c\right ) C}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c} \\ & = \frac {C x}{c}+\frac {\left (A c-b C-\frac {A b c-b^2 C+2 a c C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (A c-b C+\frac {A b c-\left (b^2-2 a c\right ) C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {B \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}-\frac {(b B) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c} \\ & = \frac {C x}{c}+\frac {\left (A c-b C-\frac {A b c-b^2 C+2 a c C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (A c-b C+\frac {A b c-\left (b^2-2 a c\right ) C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {B \log \left (a+b x^2+c x^4\right )}{4 c}+\frac {(b B) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c} \\ & = \frac {C x}{c}+\frac {\left (A c-b C-\frac {A b c-b^2 C+2 a c C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (A c-b C+\frac {A b c-\left (b^2-2 a c\right ) C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {b B \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c \sqrt {b^2-4 a c}}+\frac {B \log \left (a+b x^2+c x^4\right )}{4 c} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.33 \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {4 \sqrt {c} C x-\frac {2 \sqrt {2} \left (A c \left (b-\sqrt {b^2-4 a c}\right )+\left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) C\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} \left (-A c \left (b+\sqrt {b^2-4 a c}\right )+\left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) C\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {B \sqrt {c} \left (-b+\sqrt {b^2-4 a c}\right ) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\sqrt {b^2-4 a c}}+\frac {B \sqrt {c} \left (b+\sqrt {b^2-4 a c}\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}}{4 c^{3/2}} \]

[In]

Integrate[(x^2*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]

[Out]

(4*Sqrt[c]*C*x - (2*Sqrt[2]*(A*c*(b - Sqrt[b^2 - 4*a*c]) + (-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqr
t[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (2*Sqrt[2]*(-(
A*c*(b + Sqrt[b^2 - 4*a*c])) + (b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt
[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (B*Sqrt[c]*(-b + Sqrt[b^2 - 4*a*c])*Log[-b
+ Sqrt[b^2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] + (B*Sqrt[c]*(b + Sqrt[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a*
c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*c^(3/2))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.26

method result size
risch \(\frac {C x}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (B c \,\textit {\_R}^{3}+\textit {\_R}^{2} \left (A c -C b \right )-C a \right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{2 c}\) \(71\)
default \(\frac {C x}{c}-\frac {\left (b^{2}-4 a c +b \sqrt {-4 a c +b^{2}}\right ) \left (\frac {B \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{2}+\frac {\left (2 A c -C \sqrt {-4 a c +b^{2}}-C b \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 c \left (4 a c -b^{2}\right )}+\frac {\left (b \sqrt {-4 a c +b^{2}}+4 a c -b^{2}\right ) \left (\frac {B \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{2}+\frac {\left (-2 A c -C \sqrt {-4 a c +b^{2}}+C b \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 c \left (4 a c -b^{2}\right )}\) \(267\)

[In]

int(x^2*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

C*x/c+1/2/c*sum((B*c*_R^3+_R^2*(A*c-C*b)-C*a)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 57.38 (sec) , antiderivative size = 861800, normalized size of antiderivative = 3191.85 \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate(x^2*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F(-1)]

Timed out. \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

[In]

integrate(x**2*(C*x**2+B*x+A)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\int { \frac {{\left (C x^{2} + B x + A\right )} x^{2}}{c x^{4} + b x^{2} + a} \,d x } \]

[In]

integrate(x^2*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

C*x/c + integrate((B*c*x^3 - (C*b - A*c)*x^2 - C*a)/(c*x^4 + b*x^2 + a), x)/c

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3843 vs. \(2 (227) = 454\).

Time = 1.47 (sec) , antiderivative size = 3843, normalized size of antiderivative = 14.23 \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate(x^2*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

C*x/c + 1/4*B*log(abs(c*x^4 + b*x^2 + a))/c + 1/8*((2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 -
 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*
b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 -
 sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*A*c^2 - (2*b^5*c^2 - 16*a*b^3*c^3
+ 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c - 1
6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c +
 sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^
3)*C*c^2 - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^
2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2
 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a
*c)*c)*a*b^2*c^4 + 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 - 32*a^3*c^5 + 2*(b^2 -
4*a*c)*a*b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*c^4)*C*abs(c) - (2*b^4*c^5 - 8*a*b^2*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4
+ 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s
qrt(b^2 - 4*a*c)*c)*b^2*c^5 - 2*(b^2 - 4*a*c)*b^2*c^5)*A + (2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*
sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 -
4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2
 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)
*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5)*C)*arctan(2*sqr
t(1/2)*x/sqrt((b*c^3 + sqrt(b^2*c^6 - 4*a*c^7))/c^4))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 +
 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) - 1/8*((2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 -
4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b
^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^3 -
sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqr
t(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*A*c^2 - (2*b^5*c^2 - 16*a*b^3*c^3 +
 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c - 16
*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c -
sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)
*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3
)*C*c^2 + 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2
*b^2*c^3 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2
- 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*
c)*c)*a*b^2*c^4 - 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^5 + 32*a^3*c^5 - 2*(b^2 - 4
*a*c)*a*b^2*c^3 + 8*(b^2 - 4*a*c)*a^2*c^4)*C*abs(c) - (2*b^4*c^5 - 8*a*b^2*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqr
t(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 +
 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sq
rt(b^2 - 4*a*c)*c)*b^2*c^5 - 2*(b^2 - 4*a*c)*b^2*c^5)*A + (2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*s
qrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4
*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2
- 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*
c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5)*C)*arctan(2*sqrt
(1/2)*x/sqrt((b*c^3 - sqrt(b^2*c^6 - 4*a*c^7))/c^4))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 +
8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) - 1/16*((b^6 - 8*a*b^4*c - 2*b^5*c + 16*a^2*b^2*c^2 + 8*a*b^3*c^2 +
b^4*c^2 - 4*a*b^2*c^3 + (b^5 - 8*a*b^3*c - 2*b^4*c + 16*a^2*b*c^2 + 8*a*b^2*c^2 + b^3*c^2 - 4*a*b*c^3)*sqrt(b^
2 - 4*a*c))*B*abs(c) - (b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4
 + (b^5*c - 4*a*b^3*c^2 - 2*b^4*c^2 + b^3*c^3)*sqrt(b^2 - 4*a*c))*B)*log(x^2 + 1/2*(b*c^3 + sqrt(b^2*c^6 - 4*a
*c^7))/c^4)/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(c))
- 1/16*((b^6 - 8*a*b^4*c - 2*b^5*c + 16*a^2*b^2*c^2 + 8*a*b^3*c^2 + b^4*c^2 - 4*a*b^2*c^3 + (b^5 - 8*a*b^3*c -
 2*b^4*c + 16*a^2*b*c^2 + 8*a*b^2*c^2 + b^3*c^2 - 4*a*b*c^3)*sqrt(b^2 - 4*a*c))*B*abs(c) - (b^6*c - 8*a*b^4*c^
2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 + (b^5*c - 4*a*b^3*c^2 - 2*b^4*c^2 + b^3*
c^3)*sqrt(b^2 - 4*a*c))*B)*log(x^2 + 1/2*(b*c^3 - sqrt(b^2*c^6 - 4*a*c^7))/c^4)/((a*b^4 - 8*a^2*b^2*c - 2*a*b^
3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(c))

Mupad [B] (verification not implemented)

Time = 8.51 (sec) , antiderivative size = 1890, normalized size of antiderivative = 7.00 \[ \int \frac {x^2 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

int((x^2*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x)

[Out]

symsum(log(- root(128*a*b^2*c^4*z^4 - 16*b^4*c^3*z^4 - 256*a^2*c^5*z^4 - 128*B*a*b^2*c^3*z^3 + 16*B*b^4*c^2*z^
3 + 256*B*a^2*c^4*z^3 - 48*A*C*a*b^2*c^2*z^2 + 8*A*C*b^4*c*z^2 - 48*C^2*a^2*b*c^2*z^2 + 40*B^2*a*b^2*c^2*z^2 +
 28*C^2*a*b^3*c*z^2 + 16*A^2*a*b*c^3*z^2 + 64*A*C*a^2*c^3*z^2 - 4*B^2*b^4*c*z^2 - 96*B^2*a^2*c^3*z^2 - 4*A^2*b
^3*c^2*z^2 - 4*C^2*b^5*z^2 + 8*A*B*C*a*b^2*c*z + 16*B*C^2*a^2*b*c*z - 32*A*B*C*a^2*c^2*z - 4*B*C^2*a*b^3*z - 4
*B^3*a*b^2*c*z + 16*B^3*a^2*c^2*z + 4*A*B^2*C*a^2*c + 2*A^3*C*a*b*c - A^2*B^2*a*b*c - 2*A^2*C^2*a^2*c + 2*A*C^
3*a^2*b - B^2*C^2*a^2*b - A^2*C^2*a*b^2 - B^4*a^2*c - A^4*a*c^2 - C^4*a^3, z, k)*((8*B*C*a^2*c^2 - 4*A*B*a*b*c
^2)/c - root(128*a*b^2*c^4*z^4 - 16*b^4*c^3*z^4 - 256*a^2*c^5*z^4 - 128*B*a*b^2*c^3*z^3 + 16*B*b^4*c^2*z^3 + 2
56*B*a^2*c^4*z^3 - 48*A*C*a*b^2*c^2*z^2 + 8*A*C*b^4*c*z^2 - 48*C^2*a^2*b*c^2*z^2 + 40*B^2*a*b^2*c^2*z^2 + 28*C
^2*a*b^3*c*z^2 + 16*A^2*a*b*c^3*z^2 + 64*A*C*a^2*c^3*z^2 - 4*B^2*b^4*c*z^2 - 96*B^2*a^2*c^3*z^2 - 4*A^2*b^3*c^
2*z^2 - 4*C^2*b^5*z^2 + 8*A*B*C*a*b^2*c*z + 16*B*C^2*a^2*b*c*z - 32*A*B*C*a^2*c^2*z - 4*B*C^2*a*b^3*z - 4*B^3*
a*b^2*c*z + 16*B^3*a^2*c^2*z + 4*A*B^2*C*a^2*c + 2*A^3*C*a*b*c - A^2*B^2*a*b*c - 2*A^2*C^2*a^2*c + 2*A*C^3*a^2
*b - B^2*C^2*a^2*b - A^2*C^2*a*b^2 - B^4*a^2*c - A^4*a*c^2 - C^4*a^3, z, k)*((16*C*a^2*c^3 - 4*C*a*b^2*c^2)/c
+ (x*(8*B*b^3*c^2 - 32*B*a*b*c^3))/c - (root(128*a*b^2*c^4*z^4 - 16*b^4*c^3*z^4 - 256*a^2*c^5*z^4 - 128*B*a*b^
2*c^3*z^3 + 16*B*b^4*c^2*z^3 + 256*B*a^2*c^4*z^3 - 48*A*C*a*b^2*c^2*z^2 + 8*A*C*b^4*c*z^2 - 48*C^2*a^2*b*c^2*z
^2 + 40*B^2*a*b^2*c^2*z^2 + 28*C^2*a*b^3*c*z^2 + 16*A^2*a*b*c^3*z^2 + 64*A*C*a^2*c^3*z^2 - 4*B^2*b^4*c*z^2 - 9
6*B^2*a^2*c^3*z^2 - 4*A^2*b^3*c^2*z^2 - 4*C^2*b^5*z^2 + 8*A*B*C*a*b^2*c*z + 16*B*C^2*a^2*b*c*z - 32*A*B*C*a^2*
c^2*z - 4*B*C^2*a*b^3*z - 4*B^3*a*b^2*c*z + 16*B^3*a^2*c^2*z + 4*A*B^2*C*a^2*c + 2*A^3*C*a*b*c - A^2*B^2*a*b*c
 - 2*A^2*C^2*a^2*c + 2*A*C^3*a^2*b - B^2*C^2*a^2*b - A^2*C^2*a*b^2 - B^4*a^2*c - A^4*a*c^2 - C^4*a^3, z, k)*x*
(8*b^3*c^3 - 32*a*b*c^4))/c) + (x*(2*C^2*b^4 - 4*A^2*a*c^3 + 2*B^2*b^3*c + 2*A^2*b^2*c^2 + 4*C^2*a^2*c^2 - 4*A
*C*b^3*c - 10*B^2*a*b*c^2 - 8*C^2*a*b^2*c + 12*A*C*a*b*c^2))/c) - (A^3*a*c^2 - C^3*a^2*b + A*C^2*a*b^2 + A*C^2
*a^2*c - B^2*C*a^2*c + A*B^2*a*b*c - 2*A^2*C*a*b*c)/c - (x*(B^3*a*b*c + A^2*B*a*c^2 + B*C^2*a*b^2 - B*C^2*a^2*
c - 2*A*B*C*a*b*c))/c)*root(128*a*b^2*c^4*z^4 - 16*b^4*c^3*z^4 - 256*a^2*c^5*z^4 - 128*B*a*b^2*c^3*z^3 + 16*B*
b^4*c^2*z^3 + 256*B*a^2*c^4*z^3 - 48*A*C*a*b^2*c^2*z^2 + 8*A*C*b^4*c*z^2 - 48*C^2*a^2*b*c^2*z^2 + 40*B^2*a*b^2
*c^2*z^2 + 28*C^2*a*b^3*c*z^2 + 16*A^2*a*b*c^3*z^2 + 64*A*C*a^2*c^3*z^2 - 4*B^2*b^4*c*z^2 - 96*B^2*a^2*c^3*z^2
 - 4*A^2*b^3*c^2*z^2 - 4*C^2*b^5*z^2 + 8*A*B*C*a*b^2*c*z + 16*B*C^2*a^2*b*c*z - 32*A*B*C*a^2*c^2*z - 4*B*C^2*a
*b^3*z - 4*B^3*a*b^2*c*z + 16*B^3*a^2*c^2*z + 4*A*B^2*C*a^2*c + 2*A^3*C*a*b*c - A^2*B^2*a*b*c - 2*A^2*C^2*a^2*
c + 2*A*C^3*a^2*b - B^2*C^2*a^2*b - A^2*C^2*a*b^2 - B^4*a^2*c - A^4*a*c^2 - C^4*a^3, z, k), k, 1, 4) + (C*x)/c